Acta Cryst. (1967). 22, 52

Étude par Diffraction de Rayons X de Complexes d'Halogénures Alcalins et de Molécules Organiques. VI. Structure de LiCl. 2C₅H₅N. H₂O

PAR F. DURANT*, P. PIRET[†] ET M. VAN MEERSSCHE

Laboratoire de Chimie Physique et de Cristallographie, Université de Louvain, Belgique

(Reçu le 28 avril 1966)

The structure of LiCl.2C₅H₅N.H₂O has been determined by a three-dimensional X-ray analysis. Space group $P_{2_12_12_1}$, Z=4; $a=12\cdot30$, $b=15\cdot73$, $c=6\cdot28$ Å. Li⁺ is surrounded by one Cl⁻ (2·33 Å), one O (1·94 Å) and two N atoms (2·05, 2·06 Å). This compound is the first example of a molecular adduct formed with an alkali metal halide. The molecules of the complex are held together chiefly by O-H···Cl⁻ hydrogen bonds (3·13, 3·15 Å).

Introduction

Les sels alcalins forment des complexes avec un grand nombre de molécules polaires ou polarisables. Étant donné l'intérêt que présentent ces composés, particulièrement pour l'étude de la liaison ion-molécule, nous avons entrepris de résoudre la structure d'un certain nombre d'entre eux. Dans une première étape, nous avons étudié des complexes d'halogénures alcalins avec des molécules comportant de l'oxygène: NaBr.2H2O (Culot, Piret & Van Meerssche, 1962), NaI.3(CH₃)₂-NCHO (Gobillon, Piret & Van Meerssche, 1962), NaI.3(CH₃)₂CO (Piret, Gobillon & Van Meerssche, 1963), NaI. 3CH₃OH (Piret & Mesureur, 1965), NaBr. 2CH₃CONH₂ (Piret, Rodrigue, Gobillon & Van Meerssche, 1966), LiCl. dioxanne (Durant, Gobillon, Piret & Van Meerssche, 1966). Dans ces composés les cations sont toujours liés aux atomes d'oxygène. Dans une deuxième étape, nous examinons des complexes d'halogénures de lithium avec des molécules organiques dans lesquelles l'azote est l'atome le plus électronégatif (pyridine, éthylènediamine). Nous décrivons ci-dessous la structure du premier composé de cette série: $LiCl.H_2O.2C_5H_5N$.

Détermination de la structure

Le chlorure de lithium hydraté forme avec la pyridine un complexe moléculaire dont la stoechiométrie correspond à l'association LiCl. $2C_5H_5N.H_2O$ (Kalhenberg & Krauskopf, 1908). Nous avons cristallisé ce composé en refroidissant une solution de chlorure de lithium dans la pyridine selon la méthode indiquée par ces mêmes auteurs. Les cristaux, très hygroscopiques, se présentent sous la forme d'aiguilles incolores dont le point de fusion est voisin de 44 °C. Nous les avons montés dans des tubes capillaires en verre de Lindemann et nous les avons placés dans un courant continu d'air froid (environ 0 °C).

Les paramètres de la maille élémentaire ont été mesurés sur des diagrammes de rotation suivant l'axe cet de Weissenberg (hk0) en utilisant le rayonnement filtré (Fe) d'un tube à anticathode de cobalt ($K\alpha =$ 1,7902 Å). Le spectre d'un fil d'argent a servi d'étalon (a=4,086 Å). Le cristal appartient au système orthorhombique et les paramètres de la maille valent:

* Titulaire d'une bourse de spécialisation de l'IRSIA.

† Chercheur Qualifié du FNRS.

Tableau 1. Coordonnées X, Y, Z et écarts-types $\sigma(X)$, $\sigma(Y)$, $\sigma(Z)$ en dix-millièmes des paramètres a, b, c Ecarts-types moyens $\sigma(A)$ en A. Constantes de température B avec écarts-types $\sigma(B)$ en A^2

	X	$\sigma(X)$	Y	$\sigma(Y)$	Ζ	$\sigma(Z)$	$\sigma(\text{\AA})$	В	$\sigma(B)$
Li	4336	0014	0744	0010	6540	0032	0.018	5.70	0.34
Cl	3321	0002	1061	0002	9570	0005	0.003	6.09	0.05
C(1)	0084	0009	2803	0006	6300	0023	0.012	6.48	0.24
C(2)	0684	0009	2021	0007	6758	0023	0.012	7.00	0.25
C(3)	1291	0010	1701	0007	5248	0025	0.013	7.42	0.27
C(4)	1329	0010	2043	0007	3265	0024	0.013	7.15	0.26
C(5)	0723	0010	2792	0007	2951	0024	0.013	7.24	0.27
C(6)	4193	0011	4302	0008	8916	0025	0.014	7.95	0.30
C(7)	3444	0013	3620	0009	8401	0033	0.017	9.88	0.39
C(8)	3002	0013	3672	0010	6511	0033	0.017	9.84	0.38
C(9)	3213	0015	4284	0010	5157	0036	0.019	10.97	0.45
C(10)	4051	0011	4869	0008	5734	0026	0.014	7.99	0.30
N(1)	0097	0006	3160	0005	4411	0016	0.008	5.53	0.17
N(2)	4474	0007	4882	0005	7642	0017	0.009	6.08	0.18
0	3583	0005	0249	0004	4127	0014	0.007	6.23	0.15

Tableau 2. Facteurs de structure observés et calculésN: intensités inférieures au minimum observable

0 0 00
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{smallmatrix} & & & & & & & & & & & & & & & & & & &$
0.7 14 0.8 001 0.8 001 0.8 001 0.8 001 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.5 0.9 0.6 0.9 0.7 0.9 0.8 0.9 0.7 0.9 0.7 0.9 0.7 0.9 0.7 0.9 0.7 0.9 0.7 0.9 0.7 0.9 0.7 0.9 0.7 1.0 0.
N 11 14 14 14 14 14 14 14 14 14
6 9 9 1 100 7 7 1 135 1 145 1 145 1 1 145 1 145 1 145 1 1 145 1 145 1 145 1 1 145 1 145 1 145 7 0 5 272 38 74 48 9 0 1 162 7 36 16 5 1 18 6 120 6 120 6 1 20 6 120 6 120 6 1 120 6 6 120 136 6 1 120 6 6 120 14 1 144 1 14 120 6 5 7 7 5 22 13 10 22 3
03 07 03 07 03 07 03 12 03 13 03 12 03 13 03 12 03 13 03 14 04 01 04 02 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 03 05 05 05 06 05 06 05 06 05 07 05 06
N N N N
210 500 1378 500 507 2845 2204 500 124 500 124 500 124 500 124 500 124 500 124 500 124 500 124 500 125 500 125 500 124 500 125
$1877 \\ 477 \\ 519 \\ 659 \\ 434 \\ 566 \\ 102 \\ 222 \\ 110 \\ 112 \\ 112 \\ 526 \\ 112 \\ 112 \\ 112 \\ 520 \\ 112 \\ 112 \\ 520 \\ 112 \\ 112 \\ 520 \\ 112 \\ 112 \\ 520 \\ 112 \\ 125 \\ 520 \\ 112 \\ 125 \\ 520 \\ 112 \\ 125 \\ 520 \\ 112 \\ 125 \\ 520 \\ 112 \\ 125 \\ 520 \\ 112 \\ 125 \\ 520 \\ 112 \\ 125 \\ 520 \\ 112 \\ 125 \\ 520 \\ 112 \\ 125 \\ 520 \\ 112 \\ 125 \\ 520 \\ 122 \\ 120$
11 07 11 07 11 07 12 00 12 00 12 01 12 02 12 03 12 04 12 05 12 05 12 05 12 07 12 05 12 07 12 05 12 07 12 08 00 04 00 04 00 04 00 04 00 05 00 04 00 05 00 06 00 06 00 06 00 06 00 06 00 07 00 06 00
N N N L=2 N N N N
45 45 45 45 45 45 45 45 45 45
$\begin{array}{c} 27\\ 342\\ 14\\ 7\\ 7\\ 7\\ 7\\ 6\\ 6\\ 12\\ 4\\ 5\\ 7\\ 7\\ 7\\ 12\\ 6\\ 6\\ 12\\ 7\\ 7\\ 12\\ 6\\ 12\\ 6\\ 12\\ 7\\ 7\\ 12\\ 6\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$
06 07 06 0.90 06 0.90 06 12 06 13 06 14 07 00 07 01 07 02 07 06 07 06 07 06 07 06 07 06 07 06 07 06 07 06 07 06 07 06 07 06 07 07 08 00 07 13 08 00 08 02 08 04 08 05 09 00 09 00 09 00 09 00 09 00 09 00 09 00 00
N N N N N N N N N N N N N N N N N N N
12586877372196 14199284 12272158 14298848102732196 14199284 12285528222168 122852222552228789938958 1228525409172 123668773799 123668747927260 1227256553918 122727576900000000000000000000000000000000000
$ \begin{array}{c} 1364660221111555116073114444325660731211112283722211112211221122112211221122112212212212212221122222112222221122222222122222222222222222222$

Tableau 2 (suite)

02 09 02 10 02 11 02 12 02 13 02 14 02 15 02 14 03 00 03 01 03 02 03 03 03 04 03 05 03 07 03 08 03 07 03 08 03 09 03 11 03 12 03 13 03 15	98 46 28 53 40 59 20 125 243 108 105 157 182 33 149 34 77 75 20 45 N 14	121 44 36 42 33 111 196 103 95 138 170 169 129 42 74 75 14 75 14 75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N	14 133 149 127 45 105 74 45 9 31 40 26 14 46 120 46 120 80 54 54 113	2 122 155 124 44 87 56 102 77 38 48 47 26 4 4 51 10 38 106	10 02 10 03 10 04 10 05 10 07 10 07 10 08 11 01 11 01 11 01 11 03 11 03 11 03 11 03 11 03 11 04 11 05 11 06 12 00 12 01 12 02 12 03	N N L = 4	14 29 14 34 20 28 21 78 34 77 29 31 29 31 29 14 16 25 13	28 37 44 3 52 35 80 29 17 29 19 27 19 27 19 27 14 23 31 18	02 00 02 01 02 02 02 03 02 03 02 04 02 05 02 06 02 07 02 08 02 09 02 10 02 11 02 12 02 13 03 00 03 01 03 02 03 03 04 03 04 03 05 03 04 03 05 03 04 04 05 04 05 05 05 05 05 05 05 05 05 05 05 05 05 0	50 75 102 105 88 88 88 88 88 88 88 88 88 88 81 41 23 167 81 81 81 81 81 81 81 52 57 52 52 52 220	55 57 196 96 66 106 68 106 70 32 38 57 63 30 196 87 87 87 85 55 65 24	05 11 05 12 06 00 06 01 06 02 06 03 06 04 06 05 06 06 06 07 06 08 06 10 07 01 07 02 07 04 07 05 07 08	N N N K	44 23 59 78 44 20 144 57 17 50 26 20 60 68 37 17	39 25 360 55 167 158 43 19 430 14 30 14 30 43 46 54 46 70
04 00 04 01	231 44	222 45	07 09 07 10		26 31	32 35	00 01		144	246	03 00	52 44	54 46	07 09 07 10 07 11		44 52 34	30 46 41
04 02 04 03	108	47	07 12		26	24	00 03		83 70	106	03 12	21	11	08 00		59	45
04 05	188	193	08 00		63 86	54	00 05	N	118 17	100	04 00	37	18	08 02		83	96
04 07	29	38	08 02 08 03		34 31	19 41	00 07 00 08	N	17	21	04 01 04 02	118	133 150	08 04		37	34
04 09	54	54	08 04 08 05		80 81	80 80	00 09		167	149	04 03	81 57	82 47	08 06		23	16
04 11	58	66	08 06 08 07		33 20	37 17	00 11		17	28	04 05	× 20 72	32 42	08 08		57	49
04 13	33	38	08 08 08 09	N	45	10 53	00 13	N	7 26	14	04 07 04 08	70 101	60 80	08 09	N	41	28
05 00	100	105	08 10 08 11		60 16	59 19	01 00		125	128	04 00	54 52	68 37	09 01		47	48
05 01 05 02	81 123	73 117	09 00		34	25	01 02		81	46	04 11	28	23	00 03		63	57
05 03 05 04	93 118	75	09 02	N	14	14	01 03 01 04		123	152	04 13	21	23	09 05	N	15	3
05 05 05 06	107	100	09 04		80	98	01 05 01 06		107 86	112 107	05 00	7.8	68 68	09 07		50	30
05 07 05 08	98 94	93 76	09 06		65	77	01 07 01 08		96 63	07 65	05 02	86 75	108	10 00		44	26
5 09 5 10	63 77	79 74	00 08		10	15	01 09 01 10		34	20 54	05 04	30	21	10 01 10 02		33 33	40 20
05 11 05 12	39 16	35	09 10		16	24	01 11 01 12	N	17	14 12	05 07	70	77	10 03		37 60	27 50
5 13 5 14	35 26	35 40	10 00 10 01		21 54	19 54	$ \begin{array}{ccc} 01 & 13 \\ 01 & 14 \end{array} $	N	13 30	14	05 09	76 46 31	42	10 05 10 06	N	13 50	16 53

 $a = 12,30 \pm 0,03$ Å $b = 15,73 \pm 0,03$ $c = 6,28 \pm 0,02$

La densité mesurée par 'flottation' dans un mélange $CCl_4-C_6H_6$ (1,17±0,05) est en accord avec la densité théorique calculée pour une maille contenant 4 molécules complexes (1,17±0,02).

Le réseau réciproque dans son ensemble a été étudié au moyen de diagrammes de Weissenberg effectués en équi-inclinaison. Deux séries de diagrammes ont été obtenues en faisant tourner le cristal successivement autour des axes [001] (axe d'allongement) et [010]. Les réflexions hkl, au nombre de 838, ont été enregistrées pour l variant de 0 à 4 par la technique des films superposés au moyen d'une caméra intégrante (Nonius). L'intensité de chaque réflexion a été mesurée par comparaison visuelle à une échelle de référence, corrigée par les facteurs de Lorentz et de polarisation et portée à l'échelle absolue par la méthode statistique de Wilson (1942). Étant donné la faible section du cristal (± 0.2 mm de diamètre), nous n'avons apporté aucune correction d'absorption. Seules, les réflexions h00 pour h=2n+1, 0k0 pour k=2n+1 et 00*l* pour l=2n+1 sont absentes; ces conditions d'extinction systématique correspondent à celles du groupe spatial $P2_12_12_1$.

Les positions atomiques (hydrogènes exceptés) et les facteurs de température ont été déterminés par la méthode de l'atome lourd. Nous avons relevé les coordonnées de l'atome de chlore au moyen d'une fonction de Patterson développée dans l'espace et ponctualisée (en divisant les intensités par le carré du produit du facteur atomique du chlore par le facteur de température moyen). Une synthèse de Fourier, calculée en soustrayant des facteurs de structure observés la contribution de l'atome de chlore, a révélé les positions des autres atomes à l'exception du lithium. Nous avons entamé l'affinement de la structure en calculant trois séries de Fourier successives. La position de l'atome de lithium est apparue dès la première synthèse.

Les coordonnées atomiques, les facteurs de température et les facteurs d'échelle ont été précisés par la méthode des moindres carrés. Dans l'application de celle-ci, nous avons attribué à chaque atome un facteur de température isotrope; nous avons négligé la contribution des atomes d'hydrogène. Dans un premier programme (Germain, Piret, Van Meerssche & De Kerf, 1962), tous les paramètres ont été affinés séparément. Un poids statistique artificiel a été choisi pour accélérer l'affinement d'après la méthode de Hughes telle qu'elle est décrite par Lavine & Rollett (1956). L'indice de désaccord entre facteurs de structure observés et calculés: $(R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|)$ décroît durant les trois premiers passages (R=0,179) mais s'élève ensuite, les coefficients de température des atomes augmentant de plus en plus, du fait que l'on néglige la corrélation entre facteurs d'échelle et de température. Dans un second programme (G.S.D. King, IBM 1620 L.S. Refinement Programme, European Research Associates, Bruxelles 18, 1963) il est tenu compte de cette corrélation; le coefficient de désaccord minimum obtenu après 7 nouvelles itérations

donne R=0,130. Les réflexions trop faibles pour être observées ont été incluses, leur facteur de structure étant posé égal à la moitié du facteur observé minimum, pour les réflexions hk0, h0l, 0kl, aux deux-tiers pour les autres. Les facteurs atomiques utilisés sont ceux de la Table 3.3.1A des International Tables for X-ray Crystallography (1962) pour C, N, O, Li⁺ et Cl⁻.

Les valeurs définitives des coordonnées atomiques, des constantes de température, et des écarts-types (calculés à partir des matrices inverses) sont consignés dans le Tableau 1. Le Tableau 2 rassemble les facteurs observés, et calculés correspondant aux coordonnées finales.

Description et discussion de la structure

A. L'entourage de l'ion lithium est tétraédrique. Il se compose de deux atomes d'azote provenant de deux molécules de pyridine, d'un ion chlore et d'un atome d'oxygène (H₂O) (Fig. 1). Les distances interatomiques et angles de valence entre l'ion Li⁺ et ses voisins immédiats sont consignés dans le Tableau 3.

Les liaisons Li-N (2,06; 2,05 Å) et Li-O (1,94 Å) sont légèrement inférieures à la somme (2,10; 2,00 Å)

Fig. 1. Structure du complexe en projection (001). Distances en Å.

Fig. 2. Structure du complexe en projection (010).

Tableau 3. Entourage du lithium. Distances interatomiques et angles de valence

LiCl	2.329 ± 0.018 Å
Li0	$1,939 \pm 0.019$
$\overline{\text{Li}}_{}N(1)$	$2,050 \pm 0,019$
$L_1 = N(2)$	$2,050 \pm 0,020$
$\Omega = \Omega(2)$	$2,000 \pm 0,020$
O = O	$3,003 \pm 0,000$
O = N(1)	$3,231 \pm 0,011$
0 N(2)	$3,187 \pm 0,011$
CI - N(1)	$3,538 \pm 0,009$
ClN(2)	3,56 7 ±0,009
N(1) - N(2)	$3,316 \pm 0,012$
N(1) - Li - N(2)	$107.5 \pm 0.9^{\circ}$
ClLiO	117.9 ± 0.9
C_{i} V_{i} V_{i	107.6 ± 0.8
$C_{i} = N(2)$	$107,0 \pm 0,0$ $108,5 \pm 0.8$
0 - 1 i - N(1)	$100, 5 \pm 0, 0$ $100, 2 \pm 0.9$
$O_{i} = I_{i} = N(2)$	$105, 2 \pm 0, 5$ $105, 7 \pm 0.9$
C = E = R(2)	$105,7 \pm 0,9$
	$120,0 \pm 0,3$ 122.5 ± 0.2
	$123, 5 \pm 0, 5$
C(I) = N(I) - LI	$128,1\pm0,9$
$C(5) - N(1) - L_1$	$115,5 \pm 0,9$
C(6) - N(2) - Li	$120,8 \pm 1,0$
C(10)–N(2)–Li	$121,5 \pm 1,0$

du rayon ionique du lithium (0,60 Å) et du rayon van der Waals de l'azote (1,50 Å) ou de l'oxygène (1,40 Å) tels qu'ils sont indiqués par Pauling (1960). Les valeurs des moments dipolaires permanents des molécules de pyridine (2,20 D) et d'eau (1,87 D) suggèrent que les interactions ion-dipôle doivent jouer un rôle prépondérant dans la formation des liaisons Li-N et Li-O. A cet égard il est significatif que les vecteurs Li-N soient approximativement dans le prolongement des plans pyridiniques (leur inclinaison par rapport à ces plans est respectivement de 7,5° (pyridine I) et 5,1° (pyridine II). C'est en effet pour cette position relative de l'ion et du dipôle que l'énergie d'interaction est la plus forte.

La distance Li–O (1,94 Å) est intermédiaire entre les valeurs rencontrées dans d'autres structures contenant un lithium entouré tétraédriquement et qui s'étagent depuis 1,80 Å dans Li_2WO_4 (Zachariasen & Plettinger, 1961) jusqu'à 2,10 Å dans CH_2OHCO_2Li . H_2O (Colton & Henn, 1965). Elle est comparable aux distances observées dans le complexe LiCl.dioxanne (1,88; 1,95 Å) (Durant, Gobillon, Piret & Van Meerssche, 1966).

L'angle que forme le vecteur Li–O avec le plan hypothétique de la molécule d'eau calculé en supposant que les liaisons O–H---Cl sont en ligne droite, est de 18°. Cet angle semble indiquer qu'il existe en plus de l'interaction ion-dipôle (qui serait maximum pour un angle nul) une influence des paires électroniques libres de l'oxygène sur la directivité de la liaison Li–O. L'hybridation de l'atome d'oxygène dans la molécule d'eau étant du type sp^3 , l'angle que l'on observerait dans le cas d'une liaison Li–O covalente serait de 55°.

La distance Li-Cl (2,33 Å) est inférieure à la somme (2,41 Å) des rayons ioniques du chlore (1,81) et du lithium (0,60) indiqués par Pauling. L'écart-type sur cette distance étant de 0,018 Å, la différence est significative. On peut l'expliquer partiellement si l'on admet que le rayon de Li⁺ donné par Pauling est légèrement surestimé. En effet, pour les composés dans lesquels le lithium a un entourage tétraédrique, les déterminations de structure récentes montrent que les distances Li-O, Li-N et Li-Cl (valeurs moyennes: 1,96, 2,06 et 2,38 Å) correspondent à un rayon de 0,56 Å pour Li⁺. De plus il faut remarquer que dans le complexe que nous décrivons le lithium n'est lié qu'à un seul anion, situation très particulière qui est peut-être à l'origine de la réduction de la distance Li-Cl.

Les angles entre les vecteurs joignant les sommets du tétraèdre à l'ion lithium sont voisins de l'angle tétraédrique théorique (109,5°). La divergence plus marquée de l'angle Cl-Li-O (117,9°) doit être attribuée aux tensions importantes développées dans les liaisons hydrogène (O-H---Cl) entre l'oxygène et le chlore de deux molécules complexes superposées (Fig.4). Les angles valentiels de l'azote sont assez proches de 120° (Tableaux 3 et 4) et correspondent à un entourage trigonal presque régulier.

B. Les molécules de pyridine sont planes. L'écart des positions atomiques au plan de référence moyen est de l'ordre de grandeur des erreurs expérimentales (Δ (pyridine I)=0,010 Å; Δ (pyridine II)=0,028 Å). Les distances et angles entre atomes dans les cycles pyridiniques sont indiqués au Tableau 4. Leurs valeurs moyennes sont [si on représente par C' les atomes C(3) et C(8)]:

NC 1,302 Å	CNC 117.0°
CC 1,437	NCC 123,4
CC' 1,321	CCC' 116,5
	CC'C 122.9

On peut comparer ces valeurs à celles trouvées pour la pyridine à l'état gazeux (Back, Hansen-Nygaard & Rastrup-Andersen) qui correspondent bien à la moyenne des distances et des angles observés dans les composés de la pyridine de structure connue (voir par exemple le Tableau V de l'article de Serewicz, Robertson & Meyers, 1965):

NC 1,340 Å	CNC 116,8°
CC 1,395	NCC 123,9
CC' 1,394	CCC' 118,5
	CC'C 118,3

L'écart avec nos valeurs est probablement significatif, du moins pour la distance CC'. Nous ne pensons pas qu'il soit principalement dû à une réelle variation des longueurs consécutives à la formation du complexe cristallin. Nous l'attribuons plutôt au fait que nous n'avons pas appliqué de correction pour les mouvements moléculaires, alors que l'agitation thermique est très élevée (*B* varie de 5,5 à 11,0 Å²). A titre d'exemple on peut calculer qu'une oscillation de 20° des molécules de pyridine autour de l'axe NC', donnerait, si on adopte un schéma simple (Cruickshank, 1956), les distances corrigées suivantes: NC=1,361; CC=1,437; CC'=1,385 Å.

C. Les interactions entre l'ion lithium et les éléments qui lui sont liés assurent la cohésion de la molécule

 Tableau 4. Distances interatomiques et angles de valence dans les molécules de pyridine

1.312 + 0.012 Å
1.329 ± 0.015
1.261 ± 0.016
$1,306 \pm 0.016$
$1,500 \pm 0,010$ 1 463 ± 0.017
$1,403 \pm 0,017$ 1 307 ± 0.018
$1,307 \pm 0,010$ 1,357 ± 0,018
$1,337 \pm 0,018$
$1,400 \pm 0,010$ 1 450 ± 0.022
$1,400 \pm 0,022$ 1,208 ± 0,024
$1,300 \pm 0,024$
$1,310 \pm 0,020$
$1,428 \pm 0,024$
116 4 1 0 00
$110,4 \pm 0,9$
$117,5 \pm 1,1$
$122,1\pm1,1$
$125,0\pm1,3$
$122,0 \pm 1,4$
$124,6 \pm 1,5$
118,0 <u>+</u> 1,3
$116,2 \pm 1,2$
$122,2 \pm 1,2$
$114,8 \pm 1,5$
$123,5 \pm 1,7$
$116,8 \pm 1,8$

complexe. Le composé LiCl. $2C_5H_5N$. H_2O est le premier exemple connu de composé d'addition moléculaire formé avec un sel alcalin (voir Lindqvist, 1963); les molécules de solvant (pyridine, eau) et l'ion chlore sont reliés chacun à un seul ion lithium.

La cohésion des molécules suivant l'axe d'allongement du cristal est assurée par des liaisons hydrogène O-H---Cl⁻ (Fig. 4). Chaque atome d'oxygène est lié aux deux ions chlore voisins. L'angle entre les vecteurs interatomiques O-Cl est de 105,7° et correspond à l'angle de valence de la molécule d'eau; il est donc probable que la liaison O-H---Cl⁻ soit en ligne droite. Elle a pour longueurs 3,13, et 3,15 Å. Ces valeurs s'accordent aux résultats trouvés dans d'autres structures; elles sont comparables à la somme des rayons de liaison hydrogène prévus par Wallwork (1962): r.OH (1,30) +r.Cl⁻ (1,79)=3,09 Å.

Les ponts hydrogène engendrent la formation de colonnes moléculaires parallèles à l'axe [001] (axe d'al-

Fig. 3. Structure du complexe en projection (100).

Fig.4. Colonne moléculaire parallèle à l'axe [001].

longement) et dont l'extension suivant cet axe est infinie (Fig. 4). Le contact entre ces chaînes est établi par de faibles interactions du type van der Waals-London produites entre molécules de pyridine plus ou moins parallèles entre elles (Fig. 5).

Nous tenons à exprimer notre reconnaissance à MM. G.S.D.King et J. De Kerf pour l'aide qu'ils nous ont apportée lors de l'affinement de la structure. Nos remerciements vont également au F.N.R.S. et à l'I.R.S. I.A. pour les mandats accordés à deux d'entre nous ainsi qu'au Fonds de la Recherche Fondamentale Collective pour le soutien financier dont a bénéficié cette recherche.

Références

BACK, B., HANSEN-NYGAARD, L. & RASTRUP-ANDERSEN J., (1958). J. Mol. Spect. 2, 361.

COLTON, R. H. & HENN, D. E. (1965). Acta Cryst. 18, 820. CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 757.

- CULOT, J. P., PIRET, P. & VAN MEERSSCHE, M. (1962). Bull. Soc. franc. Minér. Crist. 85, 282.
- DURANT, F., GOBILLON, Y., PIRET, P. & VAN MEERSSCHE, M. (1966). Bull. Soc. chim. Belges, 75, 52.

Fig. 5. Cohésion cristalline entre les différentes colonnes moléculaires.

- GERMAIN, G., PIRET, P., VAN MEERSSCHE, M. & DE KERF, J. (1962). Acta Cryst. 15, 373.
- GOBILLON, Y., PIRET, P. & VAN MEERSSCHE, M. (1962). Bull. Soc. chim. France, p. 1407.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- KALHENBERG, L. & KRAUSKOPF, F. C. (1908). J. Amer. Chem. Soc. 30, 1104.
- LAVINE, L. R. & ROLLETT, J. D. (1956). Acta Cryst. 9, 269.
- LINDQVIST, I. (1963). Inorganic Adduct Molecules of Oxo-Compounds. p. 4, Berlin: Springer-Verlag.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- PIRET, P., GOBILLON, Y. & VAN MEERSSCHE, M. (1963). Bull. Soc. chim. France, p. 205.
- PIRET, P. & MESUREUR, C. (1965). J. Chim. Phys. 62, 287.
- PIRET, P., RODRIQUE, L., GOBILLON, Y. & VAN MEERSSCHE, M. (1966). Acta Cryst. 20, 482.
- SEREWICZ, J., ROBERTSON, B. K. & MEYERS, E. A. (1965). J. Phys. Chem. 69, 1915.
- WALLWORK, S. C. (1962). Acta Cryst. 15, 758.
- WILSON, A. J. C. (1942). Nature, Lond. 150, 151.
- ZACHARIASEN, W. H. & PLETTINGER, H. A. (1961). Acta Cryst. 14, 229.